منابع مشابه
Deformation of Outer Representations of Galois Group
To a hyperbolic smooth curve defined over a number-field one naturally associates an "anabelian" representation of the absolute Galois group of the base field landing in outer automorphism group of the algebraic fundamental group. In this paper, we introduce several deformation problems for Lie-algebra versions of the above representation and show that, this way we get a richer structure than t...
متن کاملDeformation of Outer Representations of Galois Group II
This paper is devoted to deformation theory of "anabelian" representations of the absolute Galois group landing in outer automorphism group of the algebraic fundamental group of a hyperbolic smooth curve defined over a number-field. In the first part of this paper, we obtained several universal deformations for Lie-algebra versions of the above representation using the Schlessinger criteria for...
متن کاملGeometric Galois Theory, Nonlinear Number Fields and a Galois Group Interpretation of the Idele Class Group
This paper concerns the description of holomorphic extensions of algebraic number fields. After expanding the notion of adele class group to number fields of infinite degree over Q, a hyperbolized adele class group ŜK is assigned to every number field K/Q. The projectivization of the Hardy space PH•[K] of graded-holomorphic functions on ŜK possesses two operations ⊕ and ⊗ giving it the structur...
متن کاملAbout Absolute Galois Group
Absolute Galois Group defined as Galois group of algebraic numbers regarded as extension of rationals is very difficult concept to define. The goal of classical Langlands program is to understand the Galois group of algebraic numbers as algebraic extension of rationals Absolute Galois Group (AGG) through its representations. Invertible adeles -ideles define Gl1 which can be shown to be isomorph...
متن کاملThe action of the Galois Group on the Torsion-free part of Unit Group in a Totally Complex Galois Extension over Q with Galois Group S3
This is the senior thesis I worked on in University of Washington, under the supervision of Prof. Ralph Greenberg. We intended to classify the torsion-free part of the unit group of a totally complex normal extension with Galois group S3 as a Z[S3]-module. We obtained a way to recognize the module structure based on the class numbers of the field extensions. Conversely we also showed that some ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2004
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2003.10.028